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The focusing of atoms to nanometer-scale dimensions by a near-resonant standing-wave light field is examined
from a particle optics perspective. The classical equation of motion for atoms traveling through the lens
formed by a node of the standing wave is derived and converted to a spatial trajectory equation. A paraxial
solution is obtained, which results in simple expressions for the focal properties of the lens, useful for
estimating its behavior. Aberrations are also discussed, and an exact numerical solution of the trajectory
equation is presented. The effects on focal linewidth of angular collimation and velocity spread in the atomic
beam are investigated, and it is shown that angular collimation has a much more significant effect than
velocity spread, even when the velocity spread is thermal.

1. INTRODUCTION

The focusing of neutral atoms by use of near-resonant
light fields has been the subject of intense interest lately.
This interest has been driven to a large extent by the
possibility of generating focal spots on the nanometer
scale by use of specially configured laser intensity pro-
files. Of particular interest has been the combination
of high-resolution focusing with atomic deposition onto a
substrate. The result is a technique for nanostructure
fabrication with possibilities for both high resolution and
massive parallelism.

The first proposal of nanometer-schle focusing was
made by Balykin and Letokhov,! who suggested the pos-
sibility of deep focusing by using the bore of a focused
TEMo,” (donut-mode) laser beam as a lens for atoms. A
wave-mechanical analysis of this configuration was done
by Gallatin and Gould,2 and a particle optics approach
was presented by McClelland and Scheinfein.® The par-
ticle optics approach, in which the atom lens formed by the
laser light was treated as an optical element analogous to
a charged-particle magnetic lens, proved useful for pre-
dicting the first-order properties and also the aberrations
of the lens. A useful discussion of the correspondence
between particle and wave approaches to atom optics can
be found in the review article by Adams et al.*

Experimentally, focusing atoms inside a TEMy,* laser
beam is not readily accomplished. On the other hand,
several experiments have been performed in which atoms
are focused by traversing a standing-wave laser field. In
this configuration, each node of the standing wave acts
as an individual lens, and the entire standing wave acts
as a lens array. Sleator et al.> showed that metastable
He atoms could be focused in a single period of a large-
period standing wave, and they observed actual imaging
of an object. Timp ef al.® used a standing light wave

to focus Na atoms as they deposited onto a substrate. .

In a similar experiment, McClelland et al.” focused Cr
atoms onto a substrate by using a standing wave, creating
permanent nanostructures that could be observed with a
range of microscopy techniques.

As demonstrated by the experiments of Timp et al.® and
McClelland et al.,” there are several advantages to us-

ing a standing wave for focused atomic deposition. Be-
cause a standing-wave light field repeats with a periodic-
ity of order A/2, where A is the wavelength of the light,
a large array of structures can be fabricated in paral-
lel. In addition, the individual lenses in the lens array
formed by the standing wave have a size of order A/2.
Starting with this small lens size (typically 200300 nm
for visible light), it is easier to achieve focusing on the
nanometer scale.

It is the purpose of this paper to apply the particle op-
tics approach used by McClelland and Scheinfein® to the
analysis of atom focusing in a standing wave. Berggren
et al8 presented a time-dependent trajectory analysis of
this problem and were able to derive some properties of
the lens formed in a node of the standing wave. In the
present study, time is eliminated from the equation of mo-
tion, and a paraxial equation is derived. Solution of the
paraxial equation provides a simple framework for char-
acterizing the basic behavior of the atomic lens formed by
each node of the standing wave in terms of a single exci-
tation parameter. Aberrations are also discussed, and in

the last section an exact numerical solution is presented

that does not rely on the paraxial approximation.

2. LIGHT FORCE ON AN ATOM

The light force on an atom has been studied rather exten-
sively, and a relatively thorough understanding, at least
for a two-level atom, has evolved based on a dressed-state
treatment.? In general, the force felt by an atom in a
light field has both velocity-dependent and conservative
terms. The velocity-dependent terms, which arise from
Doppler shifts experienced by the atom and from nona-
diabatic effects, have been utilized extensively for laser
cooling.l® Many practical applications have made use of
these dissipative terms, such as the slowing and trapping
of atoms and the collimation of atom beams to a high
degree. However, the velocity-dependent terms must be
negligible if a particle optics approach to laser focusing of
atoms is to be applicable in a straightforward way. Many
of the fundamental concepts in particle optics presume a
conservative potential.
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Fortunately, for a wide range of parameters the
velocity-dependent terms in the light force can be ig-
nored, and a conservative potential can be derived. In
this regime the light force is often referred to as the
dipole force, since it can be thought of classically as the
interaction of the induced atomic dipole with a gradient
in the electric field of the laser. If the laser intensity
is relatively low and/or the detuning from resonance is
relatively large, such that there is not a significant popu-
lation of excited-state atoms, the light force potential on
a two-level atom can be written as®

iy Iz, y, 2)
8 1, @

where y is the natural linewidth of the atomic transition
(in radians per second), A is the detuning of the laser
frequency from the atomic resonance (also in radians per
second), I(x, y, 2) is the laser intensity, and I, is the sat-
uration intensity associated with the atomic transition.
U(x, y, z) is sometimes expressed in terms of the Rabi
frequency Q(x, y, 2) = y[I(x, y, 2)/2L,]"? as U(x, y, 2) =
hQ(x, y, 2)°/4A. We note that Eq. (1) is strictly valid
only for a two-level atom. It can, however, be used for
more complicated atoms, such as those with multiple mag-
netic sublevels, provided that optical pumping and coher-
ences can be ignored.

If one is willing to accept some restrictions on the range
of validity, Eq. (1) can be generalized to include the ef-
fects of saturation, which occurs for higher laser intensity
and/or smaller detunings. The key assumptions are (1)
that the atom moves slowly enough in the spatially vary-
ing laser field so that equilibrium between the internal
state and the radiation field is always maintained (i.e.,
adiabatic conditions) and (2) that the atom does not spend
long enough in the field to experience enough spontaneous
emission to modify significantly its trajectory. The time
scale over which both spontaneous emission and the re-
turn to equilibrium occur is 1/y, so condition (1) is ob-
tained if (v,/I}(dI/dz) << ¥, and condition (2) is obtained
if (L/v,) > 7!, where v, is the characteristic velocity
in the 2 direction and L is the characteristic length over
which the interaction occurs. In this regime the poten-
tial is!! ‘

Ulx, y,2) =

Ute, 3,2 = 22 Inl1 + pix, 3, 21, @
where
Ix,y,2) _ ¥*
plx, ¥, z)= 1, 77 + 4A? (3)
= poG(x, y, 2). “)

In Eq. (4) the spatial dependence of p(x, y, 2) is grouped
into a dimensionless function G(x, y, 2), and the laser
parameter dependence is grouped into the quantity

b
Po I, y2 + 4A?

where I, is the laser intensity at that point in space
where G(x, y, z2) = 1. We observe that, for large detun-
ing and/or small intensity, Eq. (2) reduces to the sim-
pler Eq.(1). For the calculations in this paper we choose
Eq. (2) as a starting point, since it can treat higher-
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intensity/smaller-detuning situations, albeit in an ap-
proximate manner. One should bear in mind that, if
p(x, y, z) is substantially greater than 1, calculations
based on the results to be derived below are valid only
in an adiabatic limit, and, conversely, if p(x, y,2) < 1,
the results should be fairly accurate.

3. EQUATION OF MOTION

We now consider the equation of motion of an atom travel-
ing through a standing-wave laser field. The spatial de-
pendence G(x, y, 2) of the laser light intensity for a laser
beam propagating along £ can be written as a product of
a standing wave in x and an envelope function g(z) in 2z
(see Fig. 1):

G(x, y, z) = g(z)sin® kx, 6)

where & = 24r/A is the wave vector of the laser light and
g(2) is the profile of the laser beam along 2 (for instance,
a Gaussian). We have ignored any y dependence of the
laser intensity because it is assumed that any light forces
along this direction will be negligible compared with those
resulting from the standing wave. We thus assume that
there is translational symmetry along the y axis, so this
dimension can be ignored, and the problem reduces to
a two-dimensional one with motion determined by the
equations ’

2+ 19U, 2) _

m  ax 0, @)
m az

Using the conservation of energy, we can combine these
two equations, eliminating time as variable, to generate
a single equation governing x as a function of z (Ref. 3):

2
% [ ( 1- g%;i)) 1+ x’2)_1’2x’:|

~1/2
+_1_(1_U<x,z)) 1+ 22 aU;:;,z)=0,

)]

Fig. 1. Laser focusing of atoms in a standing wave, showing
the sinusoidal behavior of the intensity along £ and the envelope
function g(z) along 2. Note the difference in scales of the x and z
axes; the periodicity along x is typically hundreds of nanometers,
while the envelope typically varies over hundreds of micrometers
along 2. :

‘




d. J. McClelland

where E, is the total energy of the atom (i.e., the kinetic
energy in a field-free region) and x' denotes differentiation
of x with respect to 2. The application of particle optics
to atom focusing in a standing wave is now reduced to
solving Eq. (9) by use of the potential given by Eq. (2).

4. PARAXIAL SOLUTION

Equation (9) can be solved numerically to obtain an ex-
act solution of the equation of motion. This will be

considered in a subsequent section. To exploit fully the

concepts of geometrical optics, however, it is valuable to
consider first a paraxial solution, in which trajectories are
assumed to be nearly parallel to the 2 axis. Focal lengths
and principal plane locations can be derived, which are
useful in determining the gross focal properties of the
lens. The exact numerical solution can then be applied
to check the range of validity of the paraxial solution and
examine aberrations.

To make the paraxial approximation, we consider the
focal properties of a single node of the standing wave
(assuming A > 0) and require that U(x, 2) << E,, 2’ << 1,
and kx << 1. In this limit, Eq. (9), with U(x, 2) from
Eq. (2) substituted, becomes

=" + q’glz2)x =0, (10)
where
hA
q2 = -2—E; pok2 . (11)

It is interesting to note that the requirements kx << 1
and Ul(x, z) << Ey ensure that the laser intensity is low
for paraxial trajectories, so in this limit one needs to worry
less about saturation effects. We now consider solutions
to Eq. (10) in a number of special cases.

A. Constant Intensity

This situation is not particularly realistic because the

atoms must enter the laser beam at some point, and the

entry is not likely to be instantaneous. Nevertheless, it

is useful to consider because it is the simplest case.
When g(z) = 1, the solution to Eq. (10) becomes

x(z) = A sin gz + B cos gz, 12)

where A and B are constants chosen according to the ini-
tial conditions of the trajectory. We note that this solu-
tion is completely equivalent to the harmonic oscillator
solution obtained in Ref. 8. To obtain the focal proper-
ties, we consider a trajectory initially paraliel to the z
axis with x = x5. We assume that the laser field starts
instantaneously at z = 0. The evolution of the trajectory
is then given by

x(2) = x9 cos qz. (13)
This trajectory crosses the z axis at a focal location
2 =m/2q. (14)

Since the trajectory is clearly curved and the focus is
within the region of laser intensity, the lens is a thick
immersion lens, and we must obtain a principal-plane
location to derive the focal length. The principal plane is
located at that z value where the tangent to the trajectory
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at z = —o intersects the tangent to the trajectory at the
focus, or

2= —72- (constant intensity) . (15)

The focal length f is found by determination of the dis-
tance between the principal plane and the focus, which
gives the simple result

f=q7 (constant intensity). (16)

B. Gaussian Beam Envelope

Since laser beams are generally Gaussian in profile, or at
least approximately so, it is most useful to consider the
case in which g(z) = exp(—22%/0,%). Here o, is the 1/e¢2
radius of the Gaussian laser beam. Unfortunately, the
paraxial equation (10) cannot be solved analytically with

this g(z). Nevertheless, the trajectories of the atoms and ,

hence the focal properties of the lens can be parameter-
ized relatively simply either through approximation or a
simple numerical calculation. We begin by converting
the equation of motion to a form in which z is replaced by
a dimeénsionless quantity Z = z/o,. The paraxial equa-
tion then becomes

%" + a exp(—-2Z%x =0, an

where we have introduced the new parameter

a=o0c2*= ;—E‘; poklo,?. (18)
First we consider the thin-lens approximation, which
is valid for very weak focusing, i.e., when ¢ << 1 and
the focal length f >> o,. In this case the asymptotic
trajectories at Z = * are straight lines given by x(—x) =
A; + By Z and x(+) = Ay + B,Z, with A;, By, Az, and B,
constant. The action of the lens can be characterized by
a ray transfer matrix M:

A _| A |,
o 4]-[2]
To solve for M, a perturbation expansion in a can be
carried out,’? and the result is

» \ V2
1 a( —)
M= 32 . (20)

To obtain the focal length of the lens, we consider the
behavior of a ray that is initially parallel to the axis,
described by setting B; = 0. The ray into which this
transforms, after passing through the lens, crosses the
axis at the focal point. Using Eq. (20) to obtain A, and
B; and finding the z intercept of the trajectory, we obtain

F=flo,= \/2/17' a! (thin lens). (21)

We note that, since the lens is thin in this approximation,
the principal plane is always located at z = 0, i.e., at the
center of the Gaussian laser beam.
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The thin-lens approximation is useful in situations in
which the standing-wave laser beam focuses the atoms at
a point well outside the region of light intensity. How-
ever, this is generally the case of a weak lens, and the
focal size will not be small. Much smaller foci are ob-
tained when the focal length of the lens is much shorter.
This occurs when the focal plane is within the laser beam
itself, i.e., when the lens is a thick immersion lens. The
thin-lens approach is no longer valid, and a numerical
solution to Eq. (17) must be obtained. Because of the di-
mensionless parameterization of the lens in terms of a,
though, the equation need only be solved once, and the
results can be applied to any atom-focusing situation.

We have solved Eq. (17) numerically with initial con-
ditions of a ray parallel to the z axis to obtain the focal
properties. The results are shown in Fig. 2, in which the
scaled focal length F and the principal-plane location Z,
are plotted as a function of the excitation parameter a.
This single universal plot is applicable to any standing-
wave Gaussian-beam atom-focusing situation. To make
use of it, one need only calculate a from Eq. (18) and then
read off the focal properties in units of the 1/e? radius o,
of the Gaussian laser beam.

By examining Fig. 2 we can observe some instruc-
tive qualitative properties of the Gaussian standing-wave
lens. For instance, if the goal is to make a shorter focal
length, it is clear that it is not worth increasing a (by,
for example, increasing the laser power or decreasing the
detuning) above a value of approximately 5. Beyond this
value the principal-plane location moves out of the lens al-
most as much as the focus moves in, resulting in a slowly
decreasing focal length. Also, if it is desired to focus the
atoms at the center of the Gaussian laser beam, one must
choose the value for a at which F = -Zp, ie., a = 537
(determined numerically). This focal location has some
practical interest because it permits an experiment to be
aligned on the basis of symmetry.”

We can see further interesting properties of the lens by
noting that a is proportional to the laser intensity I, and
the square of the 1/e? radius o,. For a standing-wave
Gaussian beam, I; is related to the incident traveling laser
power Py by

(22)

Thus when the focal properties of the lens are expressed
in terms of the incident laser power, the dependence on
a2 cancels, leaving a independent of o,. As a result,
the laser beam parameters that determine the essential
behavior of the lens are only the power P, and the de-
tuning A. The beam radius o, serves only as a scale-
determining factor.

The scaling of the focal length with o, permits one to
fix the focal location at the center of the laser beam (a
convenient conifiguration from a practical viewpoint) and
still have a choice of focal lengths by choosing different
laser beam sizes. The power required for bringing the
lens into focus at the beam center is (for A >> y)

wELA

o @3)

Procus = 5.37

As an example, consider a thermal Cr beam with v =
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926 m/s, y = 8.15 X 107 rad/s, I, = 85 W/m?2, A =
425.55 nm (in vacuum), and A = 27 x 200 MHz. For
these parameters, Proeys = 2.9 mW.

5. FOCAL LINEWIDTH AND ABERRATIONS

The focal properties described by Eqs. (15), (16), and (21),
and Fig. 2 provide a basic description of laser focusing of
atoms in a standing wave. However, since all of these
results are derived from solutions of the paraxial equa-
tion, they necessarily represent approximations. Follow-
ing the convention of particle optics, we group all behav-
ior that is not covered by the paraxial equation into the
category of aberrations.

Aberrations are of great interest because they deter-
mine the ultimate resolution of the standing-wave lens
and hence determine how small a feature can be fabri-
cated by use of laser focused deposition. Before consid-
ering aberrations, however, we discuss the contribution
to the linewidth arising from the angular spread of the
incident atom beam. This is not, strictly speaking, an
aberration because it arises even in the paraxial approxi-
mation. Nevertheless, it is often the most significant
contribution to the linewidth and hence needs to be es-
timated. Furthermore, it provides an illustration of the
utility of the paraxial approximation.

Given the focal Jength of a lens, the contribution of the
angular spread of an atom beam to the focal linewidth can
be estimated'by use of simple geometric optics. While a
perfectly collimated atom beam will focus to an infinitesi-
mally thin line at the focus of the lens, a nearly collimated
beam, with angular divergence 6, will focus to a small but
finite line a short distance past the focus. To estimate
the width of this line, we can represent the nearly col-
limated atom beam as arising from a virtual object at a
position —z, with size 2,6, with 2, — o, The image of
this object will be nearly at the focus, demagnified by an
amount f/z,. The resulting linewidth is

s=f40. (24)

This result can be used to generate a quick rough esti-
mate of the contribution of atom beam collimation. For
example, if the atoms are focused within the laser beam,
Fig. 2 shows that the focal length will be of the order of

15

1.0

F, Z, (units of 5,)

0.0

Fig. 2. Focal length F and principal-plane location Z, for laser
focusing of atoms in a standing wave with a Gaussian envelope
versus the excitation parameter a = pok20,24A/(2E). F and
Z, are expressed in units of the 1/e? radius o, of the laser beam.
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the Gaussian-beam 1/e? radius o,. Considering the case
of Ref. 7, we let o, = 0.2 mm and 6 = 0.2 mrad. The
resulting linewidth estimate is 40 nm, not far from the
measured value of 65 = 6 nm.

A. Diffraction
Diffraction, as an aberration, arises from the de Broglie
wavelength of the atom and is completely neglected in any
particle optics approach. Nevertheless, its effects on the
linewidth can be estimated based on the focal length de-
rived from the paraxial solution if we make the analogy
to the diffraction limit of lenses in light optics. We re-
strict ourselves to considering cases in which the focal
length is short enough so that contributions from neigh-
boring potential wells in the standing wave do not over-
lap. For one-dimensional focusing the diffraction-limited
full width at half-maximum is given by
d=o0gsfiea, (25)
Xo
where Agg is the de Broglie wavelength of the atom (based
on its longitudinal momentum) and xq is the full width of
the lens. While useful for rough estimates, this formula
is somewhat difficult to apply precisely because x; is not
well defined. Nevertheless, we can obtain a reasonable
estimate by setting xo = A/2. A full treatment of the
effects of diffraction, especially in the presence of other
aberrations, is beyond the scope of a particle optics ap-
proach and must be treated by means of a fully quantum
approach such as a quantum Monte Carlo calculation.?

B. Chromatic Aberration

The term chromatic aberration in a particle optics con-
text is used to refer to the variation of focal length owing
to particles passing through a lens with differing initial
kinetic energies. The resulting range of focal lengths re-
sults in a blurring of the focus, limiting the resolution of
thelens. Chromatic aberration can be a significant effect
in the case of atom optics, mainly because atom beams
typically have very broad velocity spreads. For exam-
ple, an unselected effusive atomic beam has dv/v ~ 1.
Several steps can be taken to reduce an atomic beam’s
velocity spread, such as employing a velocity selector, us-
ing supersonic expansion, or applying some laser cooling
techniques. But practically speaking it is not generally
possible to reduce the spread below 0.1 or possibly 0.01
without a large loss of flux.

To account properly for chromatic aberration when the
atomic source is effusive and unselected, the only ap-
proach is to employ exact ray tracing, as discussed below.
When év/v ~ 0.1 or less, though, it is reasonable to use a
differential approach. We consider a parallel beam that
is being focused by a lens with focal length f and ask by
how much a ray will miss the focus if the velocity is varied
by an amount dv. Using geometrical considerations, we
see that the trajectory error 6x is given by :

éx = Pof, (26)

where ¢ is the convergence angle of the ray at the focus
and &f is the variation in the focal length owing to the
velocity variation. We can obtain the focal length varia-
tion by noting that fis a function of @, which is a function
of v through its dependence on Ejy:
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df da df df sv
8 BT r— BT e—— ——— [ p— ——— —
f dv dv dv da ov Za da v 27
The resulting trajectory error is
éx = —2¢a d4f v, (28)
de v

To evaluate Eq. (28) for the Gaussian standing-wave lens,
either the derivative df/da is obtained numerically (see
Fig. 3) or the thin-lens version df/da = —2,/2/7a 20,
can be used if appropriate. An estimate of the linewidth
contribution owing to chromatic aberration then consists
of estimating the angle ¢ and using Eq. (28). For many
situations, one can reasonably approximate ¢ by taking
the lens size divided by the focal length, i.e., A/ @£).

C. Spherical Aberration

Spherical aberration is a result of the higher-order terms
in the equation of motion that cause trajectories to devi-
ate from the path predicted by the paraxial equation.
For instance, in the paraxial approximation any ray
traveling parallel to the z axis will cross the axis at
the focal point after being focused by the lens. But in
the actual standing-wave potential, which has the depen-
dence In(1 + const. X sin? kx), rays that enter the lens
far from the axis feel a weaker force than is necessary to
bring them to a focus at the focal point. The result is a
focus that is no longer infinitesimal, but blurred.

The traditional way to calculate the effects of spheri-
cal aberration* is to expand the equation of motion and
solve it by treating the next higher-order terms as a per-
turbation to the paraxial equation. This approach works
well in cases in which the paraxial equation can be solved
analytically® but becomes less useful when the paraxial
equation must be solved numerically. Furthermore, it is
less appropriate in cases in which the lens is not limited
by any aperture and trajectories can enter in any part
of the potential, experiencing forces that are quite differ-
ent from those assumed in the paraxial approximation.
Because the Gaussian standing-wave lens is a situation
in which both these problems arise, we choose not to at-
tempt an expansion of the equation of motion. Instead
we go directly to a numerical solution of the exact equa-
tion of motion, wherein the effects of spherical aberration

10.00 v - -
& 1.000} 1
k]
2
§ o.100f :
(]
3
? 0.010} 4
.001 - L s
0.001 5 5 10 15 20
a

Fig. 3. Derivative of the focal length F with respect to the exci-
tation parameter a for laser focusing of atoms in a standing wave
with a Gaussian envelope. This is used to estimate chromatic
aberration in the paraxial solution.
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can be viewed explicitly. What is lost is a simple formula
or two that can be used to predict approximate spherical
aberration linewidths, but what is gained is a more ex-
act and general solution. We hope that, by describing
the method used to solve the equations of motion, it will
appear simple enough for others to adapt to their own

- specific situations.

6. EXACT NUMERICAL SOLUTION

In this section we present a numerical solution for trajec-
tories in the Gaussian standing-wave lens that does not
rely on the paraxial approximation. This approach has
its utility when the first-order properties have been ob-
served and when it is desired to find out the effects of a
very large velocity spread, large spherical aberration, or
other higher-order effects.

We begin by noting that we must solve the second-
order differential equation (9) for x as a function of z with
Eq. (2) for the potential. From a numerical standpoint
it is convenient to convert Eq. (9) into two coupled first-
order differential equations in the variables x and o =
x' = dx/dz. Subsituting these variables, we obtain

=, . 29)
__1+a® [ 8U U\,
& = B -U)\% oz ox (30)

The solution of Eqs. (29) and (80) is readily obtained
with any number of numerical packages. The poten-
tial U(x, z) and its derivatives are simple analytic func-
tions, so the solution is reasonably well behaved. We
present here a few results calculated for the focusing of
Cr atoms, for which A = 425.55 nm (vacuum wavelength),
y = 8.15 X 107 rad/s, I, = 85 W/m?2, the atomic mass is
52 amu, and the most probable thermal velocity from a
1800-K oven is vy = 926 m/s.

Figure 4 shows the calculation of a series of trajecto-
ries, all initially parallel to the z axis, entering the nodal
region of a Gaussian standing wave at varying distances
from the axis. The Gaussian standing wave was given a
1/e? radius of 0.195 mm, corresponding to the experiment
in Ref. 7. The laser detuning was 200 MHz, and the in-
tensity was chosen to be 1.98 X 10° W/m?2, a value that
results in a = 5.37, the condition required for focus at the
center of the beam.

By inspection of Fig. 4 a comparison can be made with
the paraxial solution, and the role of spherical aberration
can be examined. As predicted by the paraxial solution,
trajectories entering the lens close to the axis come to
a focus at the center of the laser beam (z = 0). Trajec-
tories entering farther away from the axis, on the other
hand, miss the focal point because of spherical aberra-
tion. What is perhaps surprising is how small the ef-
fects of spherical aberration are, however. Also shown
in Fig. 4 is the atomic flux at the focal plane, assum-
ing a flux completely uniform in x initially entering the
lens. Despite the spherical aberration, the flux at the fo-
cal plane consists of a very narrow peak with a linewidth
ofonly 1.0 nm. It appears that the major effect of spheri-
cal aberration is only to form a small pedestal around the
foot of the focal peak.
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While the spherical aberration of the lens shown in
Fig. 4 is small, it is interesting to estimate the diffraction
limit. Using Eq. (25) with Aqp = 8.2 pm, we obtain d =
6.6 nm, a value substantially larger than the spherical
aberration linewidth. Thus in the absence of chromatic
aberration and initial angular divergence the standing-
wave lens is diffraction limited.

Figure 4 provides an illustration of the potential ulti-
mate performance of a standing-wave lens, assuming no
velocity or angular spread in the atom beam. However,
it is of specific interest to examine the behavior of the
lens when the incident atom beam contains a wide vari-
ety of initial velocities and angles. We can accomplish
this by tracing a large number of trajectories, assigning a
relative flux probability to each. :

Figure (5a) shows such a calculation, in which initial
conditions (x;, v;, a;) for each trajectory were chosen on
a grid, with v; used to set the initial kinetic energy E,.
Each trajectory was given a flux probability

2
P(x, v, a)dxdvda = vt exp(—z_l:)._z.)
0

2,2
X exp(—g 02)dxdvda, (31)

Uox

and we determined the flux probability at the focal plane
by creating a histogram, summing the probabilities of all
trajectories that ended within a given x bin after travers-
ing the lens.

The probability relation (31) is independent of x be-
cause the distribution in x is uniform. We obtain the
velocity and the angle dependence by taking the prod-
uct of the thermal flux probability of having a longi-
tudinal velocity v, proportional to v?® exp(—v?/2v2)dv,

300 TTTTTTTTT

Flux at focal plane

200,

z (um)

Trajectories
100

-100

x (nm)
Fig. 4. Exact trajectory calculation of laser focusing of Cr atoms
in a standing wave with a Gaussian envelope. A series of tra-
jectories are shown for varying initial x values. All trajectories
are given the same initial velocity of 926 m/s and zero initial
angle relative to the z axis. Also shown is a plot of the atomic
flux at the focal plane, assuming a uniform flux entering the
lens, and laser beam profiles I(x, z) along £ (bottom) and 2 (left).
For this calculation the 1/e? radius was 195 um, corresponding
to the experiment in Ref. 3. The laser detuning was 200 MHz,
and the intensity was chosen to be 1.98 X 10° W/m?2, a value
that results in a = 5.37, the condition required for focus at the
center of the laser beam.
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Fig. 5. Atomic flux distributions calculated by tracing trajec-
tories through a standing-wave laser field with a Gaussian
envelope. Laser and atomic beam parameters are the same as
in Fig. 4 except as noted. The flux distributions are normalized
such that the integral over A/2 has the value of 1. (a) Atoms
have a thermal longitudinal velocity distribution and an angular
spread of 2 X 10~4 rad (FWHM). (b) Atoms have a longitudinal
velocity spread artificially narrowed to 1 m/s (FWHM) and an
angular spread of 2 X 1074 rad (FWHM). (c) Atoms have a
thermal longitudinal velocity spread and a narrowed angular
spread of 1 X 108 rad (FWHM).

and the probability of having a transverse velocity
v, = av, proportional to the Gaussian distribution
exp(—v,?/2vo.2)dv,. The longitudinal velocity distri-
bution is governed by the source temperature through
(1/2kgTeource = (1/2)mug?, and the transverse velocity
spread is assumed to be generated by transverse laser
cooling with rms velocity spread vg,. It is assumed that
the laser cooling has reached equilibrium, so that any cor-
relations between v, and v are nonexistent. Relation (31)
can be written more simply as

v? a?
P(v, a) = v* exp ~ 20z 1+ pocg A (32)

where we have introduced the quantity a¢ = vo,/vo. To
apply relation (32), we obtain vy from the source tempera-
ture and derive ap from a measurement of the degree of
collimation produced by the laser cooling. The angle a,
is related to the FWHM of the angular distribution mea-
sured in a fluorescence experiment!® by

OFWHM | (33)

o _arwE
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For the purpose of the calculation here the experimental
value’ arwym = 0.2 mrad was used.

Despite the broad velocity spread with 8v/v ~ 1 present
in a thermal atomic beam, the flux distribution shown in
Fig. 5(a) still forms a peak at the focal point that has a
surprisingly narrow FWHM of 33 nm. It is of interest to
observe whether this width arises mostly from the veloc-
ity spread or the angular spread, or equally from both.
To investigate this, we have recalculated the trajecto-
ries with an artificially narrowed velocity spread, shown
in Fig. 5(b), and a narrower angular spread, shown in
Fig. 5(c). The velocity spread was narrowed by replace-
ment of the thermal flux distribution in relation (31) with
a Gaussian centered at the most probable velocity vpax =
V3u,. We could vary the width of this Gaussian with-
out changing the most probable velocity. Figure 5(b) was
calculated with a FWHM of 1 m/s. We narrowed the an-
gular spread for the calculation in Fig. 5(c) by reducing
ag to 1 X 1078,

Figure 5(b) shows the remarkable effect that, even
when the width of the velocity distribution is drastically
reduced, the linewidth at the focal plane is only reduced
by 36%. Conversely, Fig. 5(c) shows that, even with a
broad thermal velocity distribution, a narrow linewidth
can be obtained, albeit with a broad pedestal. We note
that the flux distribution shown in Fig. 5(c) is quite simi-
lar to what was obtained in Ref. 8 when a distribution in
velocities was considered.

The conclusion that must be drawn from Fig. 5 is the
somewhat counterintuitive one that the broad velocity
spread in the atomic beam plays a much less signifi-
cant role in determining the linewidth than does the de-
gree of collimation of the incident atomic beam. We can
shed some light on this apparent insensitivity to veloc-
ity spread by recognizing that all the atoms with ve-
locities less than that of the most probable have focal
points before the desired focal plane. Since the focal
point is within the lens, these trajectories continue to be
focused after crossing the axis and are effectively chan-
neled through the lens; that is, they continue to be af-
fected by a potential that becomes steeper and tighter be-
cause of increasing laser intensity, and their trajectories
are kept near the axis. The trajectories with higher ve-
locities are indeed focused less effectively, but the result
is that they follow straighter paths, creating a more or
less constant background.

7. CONCLUSION

In this paper we have constructed a framework that fa-
cilitates thinking about the focusing of atoms in a laser
standing wave and in particular provides a series of
simple formulas for making numerical estimates of the
focal properties of the lens formed by each node of the
standing wave. We have discussed a paraxial approxi-
mation that permits the application of a range of elemen-
tary geometric optics concepts to the lens, and then we
have considered aberrations and a more exact numerical
solution, with an emphasis on predicting linewidths at
the focal plane.

The degree to which the ray-tracing approach discussed
here can be used to accurately predict linewidths in a de-
position process is an ongoing topic of research, and, as
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more experiments are conducted, a better understanding
of this will be forthcoming. Certainly there are a num-
ber of phenomena that are not considered in this model
that might have some influence on the outcome. These
range from fundamental considerations such as the appli-
cability of the potential equation (2) in view of velocity-
dependent forces, spontaneous emission, and dipole force
fluctuations, to quantum considerations such as proper
treatment of quantization of the translational motion of
the atoms, to practical considerations such as surface dif-
fusion and growth issues. Nevertheless, the framework
presented here, because of its simplicity, should prove
useful at least as a starting point for analyzing the be-
havior of an atomic lens formed by a near-resonant laser
standing wave.
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